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Abstract

In this paper we consider relations between the operation of word in-
sertion and primitivity. A necessary and sufficient condition under which
the insertion u ← u of the word u into itself has maximum cardinality
is obtained. The notion of insertion sequence is introduced and sufficient
conditions under which an insertion sequence is a special type of lan-
guage (regular, context-free, biprefix code) are obtained. Based on the
operations of insertion, shuffle and commutative shuffle (which generalize
catenation), the notions of ins-primitive words, shuffle-primitive words,
and com-shuffle-primitive words are defined and investigated. These no-
tions turn out to be generalizations of the classical notion of primitive
words.

1 Introduction

Insertion is a word operation that has been introduced in [1] as a generalization
of catenation. Given two words, u and v, instead of catenating v to the right
extremity of u, the insertion u← v consists of the words obtained by inserting
v into an arbitrary place in u:

u← v = {u1vu2| u = u1u2}.

The result of the insertion u ← v is thus a set with cardinality greater than
one, and less than or equal to |u| + 1, where |u| denotes the length of u. A
natural question is under what conditions does the set u ← v have maximum
cardinality. The cardinality of u← v is in direct connection with the structure
of u and v : if they contain repetitive patterns, then chances are that there are
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two different places of insertion of v into u that yield the same word, reducing
thus the cardinality of u ← v. To formalize this idea, we introduce the notion
of insertion of rank i, u←i v: the word v is inserted exactly after the ith letter
of u. (The notion makes sense only if i is less than or equal to |u|.)

Note that now we have card(u ← v) < |u| + 1 iff there exist 0 ≤ i, j ≤ |u|
such that u ←i v = u ←j v. Based on the properties of the insertion of rank
i obtained in Section 2, we show that a necessary and sufficient condition for
u ← u to have maximum cardinality, |u|, is that the word u is primitive. (A
word u ∈ X+ is said to be primitive if u = vn, v ∈ X+, n ≥ 1, implies n = 1.)

The idea of controlling the position where the insertion takes place carries
over to the iterated insertion. The iterated insertion is obtained from insertion
in a similar way the Kleene closure is obtained from catenation:

u←0 v = u,

u←i+1 v = (u←i v)← v, i ≥ 0,

u←∗ v =
∞⋃

i=0

(u←i v).

If we add the restriction of controlling the position of insertion, we obtain the
notion of inserting sequences. If u is a given word, the inserting sequence σ(u)
determined by the word u and the pilot sequence of integers σ = {i1, . . . , ik, . . .},
0 ≤ ij ≤ |u|, is obtained by starting with the word u and inserting at each step
the word u into the preceding inserted u. The position of insertion is determined
by the pilot sequence. More precisely, if the word obtained at step j is xuy,
where we emphasized the last inserted u, then the next word is obtained by
inserting u after the ij+1th letter of the marked occurence of u.

Section 2 investigates properties of inserting sequences. Namely, sufficient
conditions under which an inserting sequence is a special kind of language (reg-
ular language, context-free language, biprefix code) are obtained.

Section 3 considers properties of a generalization of the notion of primitive
word, induced by the insertion operation. A word u is called ins-primitive if
u 6∈ v ←n v for any n ≥ 1 and any v ∈ X+. As insertion is a generalization of
catenation, it follows that ins-primitive words are primitive, but the converse is
not true. We show that the set of ins-primitive words over an alphabet X with at
least two letters is right and left dense. (A language L ⊆ X∗ is called right/left
dense if for every u ∈ L there exists w ∈ X∗ such that uw ∈ L, respectively
wu ∈ L.) If the word u is not ins-primitive, an ins-primitive v ∈ X+ with
u ∈ v ←n v, n ≥ 1, is called an ins-root of u. It turns out that every word that
is not ins-primitive has an ins-root, but, in contrast with the primitive case, a
word can have several ins-root.

Finally, based on the fact that the shuffle operation and the commutative
shuffle operation also generalize catenation, the notions of shuffle-primitive and
com-shuffle-primitive words are introduced and investigated in Section 4. For
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example, a necessary and sufficient condition under which a word is com-shuffle-
primitive is obtained.

In the following, an alphabet X is a finite nonempty set and X∗ is the free
monoid generated by X under the catenation operation. 1 denotes the empty
word and X+ = X∗\{1}. For a word w and a letter a ∈ X , Na(w) is the number
of occurrences of the letter a in w. For futher notions of formal language theory
and theory of codes the reader is referred to [5], respectively [6].

2 Word insertions

The insertion of a word v into a word u consists of all the words obtained by
inserting v in arbitrary places in u. For example, let X = {a, b} and let u = bab2.
We have u ← u = {bab3ab2, b2ab2ab2, babab4, bab2ab3}. Here, card(u ← u) is
maximum, i.e., equals |u| = 4. This is not always necessarily the case. For
example, in the extreme case when u = an and v = am, u ← v = {an+m}
is a singleton set. We are looking in the following for necessary and sufficient
conditions under which the cardinality of u ← v equals |u| + 1. Note that two
words in u← v coincide iff there exist two positions i and j in u such that the
insertion of v after the ith letter of u yields the same word as the insertion of v
after the jth letter of u. This notion of controlling the position of insertion can
be formalized as follows.

Definition 2.1 Let u = a1a2 . . . ak with ai ∈ X, 0 ≤ i ≤ k . For 1 ≤ i ≤ k, the
insertion of rank i of v into u is defined as:

u←i v = a1a2 . . . aivai+1 . . . ak.

For i = 0, u←0 v = vu.

Remark that if |u| = k, then u ←0 u = u ←k u = u2. Note also that the
catenation uv equals the insertion of rank |u|, and the catenation vu equals
the insertion of rank 0 of v into u. The following proposition summarizes some
necessary conditions for the insertions of certain ranks to yield the same word.

Proposition 2.1 Let u, v ∈ X+.
(i) If u ←i v = v ←j u and 0 ≤ i < j ≤ min{|u|, |v|}, then either u is an

infix of v or vy = xu for some x, y ∈ X∗.
(ii) If u←i v = v ←i u, 0 ≤ i ≤ min{|u|, |v|}, then either u is a prefix of v

or v is a prefix of u.
(iii) If u ←i u = u ←j u, 0 < i < j < |u|, then u = gk for some g ∈ X+

and k ≥ 2, i.e., the word u is not primitive.

Proof. (i) We have u ←i v = u1vu2 with u = u1u2 and v ←j u = v1uv2 with
v = v1v2. Therefore u1vu2 = v1uv2 and |u1| < |v1| because i < j. Hence
v1 = u1x, u1vu2 = u1xuv2 and vu2 = xuv2.
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If |u2| ≤ |v2|, then v2 = yu2 which implies vu2 = xuyu2, that means u is
an infix of v. On the other hand, if |u2| > |v2|, then u2 = yv2, which implies
vyv2 = xuv2, that is vy = xu.

(ii) Assume that |u| < |v|. Then u = u1u2, v = v1v2 with u1vu2= v1uv2,
where |u1| = |v1| = i. We deduce that u1 = v1 and vu2 = uv2. Therefore
v = ux and u is a prefix of v.

(iii) We have u1uu2 = u←i u = u←j u = v1uv2 with |u1|<|v1|, |u2| > |v2|
where u = u1u2 = v1v2. Hence v1 = u1x and u2 = yv2 with x 6= 1, y 6= 1 and
|x| < |u|, |y| < |u|. As u = u1u2 = v1v2, we deduce u = u1yv2 = u1xv2, which
further implies x = y. From u1uxv2 = u1xuv2 follows ux = xu. Since |x| < |u|,
u = xu′ = u′x, which by a known result (see [6]) implies that x and u′ are
powers of a common word g ∈ X+, i.e., x = gi, u′ = gj, i, j > 0. Consequently,
u = gi+j , i + j > 1, that is, the word u is not primitive. 2

Part (iii) of Proposition 2.1 indicates that a sufficient condition for u←i u
and u←j u to yield different words for i 6= j, 0 < i, j < |u| is that u is a primitive
word. This condition is also necessary, as seen in the following proposition.

Proposition 2.2 Let u ∈ X+ with |u| = k. Then card(u ← u) = k iff u is a
primitive word.

Proof. ” ⇒ ” Let u be a primitive word and assume, for the sake of contra-
diction, that card(u ← u) < k, i.e., there exist 0 < i < j < |u| such that
u←i u = u←j u. According to Proposition 2.1 (iii), this implies that the word
u is not primitive – a contradiction.

For the reverse implication, let u ∈ X+ with card(u ← u) = k and assume
that u is not primitive. Then u = gi, i > 1, with g a primitive word. This
implies gugi−1 = gi−1ug ∈ u ← u, i.e., u ←|g| u = u←(i−1)|g| u, which further
means that card(u← u) < k – a contradiction. 2

In the remainder of this section we consider carrying over the idea of con-
trolling the position of insertion to iterated insertion. Let u ∈ X+ and consider
the following sequence:

u0 = u, u1 = v0uw0, u2 = v0v1uw1w0, . . . , ui+1 = v0v1 . . . viuwi . . . w1w0, . . .

where viwi = u for i ≥ 0. Such a sequence is called an inserting sequence of the
word u. Intuitively, an inserting sequence is obtained by starting with a word u
and inserting at each step the word u into the preceding inserted u.

The inserting sequence is completely determined by the word u and the
sequence of integers:

σ = {|v0|, |v1|, |v2|, . . . , |vi|, . . .}, 0 ≤ |vi| ≤ |u|.

The sequence of non-negative integers associated with an inserting sequence is
called the pilot sequence of the inserting sequence and the word u is called the
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germ of the sequence. Hence, given a word u, every pilot sequence generates an
inserting sequence and vice versa.

For example, the inserting sequence {ab, a2b2, . . . , anbn, . . .} is generated by
the germ u = ab and the pilot sequence {1, 1, . . . , 1, . . .}.

The inserting sequence {ab, (ab)2, . . . , (ab)n, . . .} is generated by the germ
u = ab and the pilot sequence {0, 0, . . . , 0, . . .} or {2, 2, . . . , 2, . . .}. More gener-
ally, for u ∈ X+, {u, u2, . . . , un, . . .} is the inserting sequence generated by the
germ u and either the pilot sequence {0, 0, . . .} or the pilot sequence {|u|, |u|, . . .}.
If the pilot sequence is {0, 1, 2, 0, 1, 2, . . .} then the first words of the inserting
sequence are abab, aabbab, aababbab, a(ab)3bab, (aab)2(bab)2, (aab)2ab(bab)2,
etc.

The following proposition gives a sufficient condition under which an inser-
tion sequence is a context-free language. (See [5] for the definition of regular
and context-free languages.)

Proposition 2.3 Let w ∈ X+. If there exists an integer N such that for n ≥ N
the pilot sequence is periodical, then the corresponding inserting sequence is a
context-free language.

Proof. Consider the word w ∈ X∗ and the pilot sequence

{j1, j2, . . . , jN , i1, i2, . . . ik, i1, i2, ik, . . .}

where 0 ≤ jp, iq ≤ |w|, 1 ≤ p ≤ N , 1 ≤ q ≤ k.
The corresponding inserting sequence will be

{uj1vj1 , uj1uj2vj2vj1 , . . . uj1 . . . ujN
vjN

. . . vj1}∪
{uj1 . . . ujN

(ui1 . . . uik
)nui1 . . . uiq

viq
. . . vi1(vik

. . . vi1)
nvjN

. . . vj1 |
n ≥ 0, 0 ≤ q ≤ k}

where |ujp
| = jp, |uiq

| = iq, and w = ujp
vjp

, w = uiq
viq

, 1 ≤ q ≤ k, 1 ≤ p ≤ N .
The inserting sequence is context-free as it can be generated by the context-

free grammar G = ({S, S′}, X, S, P ) where

{S −→ uj1 . . . ujp
vjp

. . . vj1 |1 ≤ p ≤ N}∪
{S −→ uj1 . . . ujN

S′vjN
. . . vj1}∪

{S′ −→ (ui1 . . . uik
)S′(vik

. . . vi1 )}∪
{S′ −→ ui1 . . . uiq

viq
. . . vi1 | 0 ≤ q ≤ k − 1}

2

Note that if u ∈ X∗ and the pilot sequence is either σ1 = {|u|, |u|, . . . , |u| . . .}
or σ2 = {0, 0, . . . , 0, . . .}, then the inserting sequences are σ1(u) = σ2(u) =
{un| n ≥ 1}, which is a regular language.

Proposition 2.4 If w ∈ X+ is a primitive word and the pilot sequence is
constant, not equal to 0 or |w|, then the corresponding inserting sequence is a
non-regular context-free language.
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Proof. Let w ∈ X∗ and consider the pilot sequence σ = {i, i, . . . , i . . .}, where
w = uv, |u| = i, 0 < i < |w|. The corresponding sequence is σ(w) = {unvn| n >
1}.

As w = uv is primitive, we have uv 6= vu. This is further equivalent to the
fact that {u, v} is a code. If we consider two letters a, b 6∈ X and the morphism
h : {a, b} −→ X∗ defined by h(a) = u and h(b) = v, then the fact that {u, v} is
a code is equivalent to h being injective. This implies h−1({unvn| n > 0}) =
{anbn|n > 0}, which is a non-regular context-free language.

If σ(w) were regular, as the family of regular languages is closed under
inverse morphisms, the language h−1(σ(w)) = {anbn| n > 0} would be regular
– a contradiction. According to the preceding proposition, σ(w) is context-free,
therefore we conclude that σ(w) is a non-regular context-free language.

2

A pilot sequence σ = {s0, s1, s2, . . . , sn . . .} for a word u is said to be internal
if 0 < sn < |u| for n ≥ 1. The following proposition connects the notions of
internal pilot sequence, biprefix code and dipolarity.

Recall (see for example [7]) that a word u is called unipolar (or bordered)
if u = vx = yv for some v, x, y ∈ X+. A word that is not unipolar is called
dipolar (or unbordered). A language L ⊆ X∗ is a prefix (suffix) code if u, ux ∈ L
(u, xu ∈ L) imply x = 1. A language is biprefix code if it is both a prefix and a
suffix code.

Proposition 2.5 Let u ∈ X+. The word u is a dipolar word ⇔ for every
internal pilot sequence σ, the corresponding inserting sequence σ(u) = {u =
u0, u1, u2, . . . , uk, . . .} is a language that is a biprefix code.

Proof. (⇒) We have σ(u) ⊆ (u ←∗ u). Let w = vx with w, v ∈ σ(u). Assume
that x 6= 1. Since u is dipolar, by a result of ([7], Proposition 3.2), 1.v.x ∈
(u ←∗ u) and v ∈ (u ←∗ u) with 1.x 6= 1 imply 1.x = x ∈ (u ←∗ u). Since u
is a dipolar word, by a result of ([7], Proposition 3.5), v, x ∈ (u ←∗ u) imply
vx /∈ (u ←∗ u), a contradiction since vx ∈ σ(u) ⊆ (u ←∗ u). It follows then
that x = 1 and hence σ(u) is a prefix code. A similar argument will show that
σ(u) is also a suffix code and hence a biprefix code.

(⇐) Suppose that u is not a dipolar word. We have to consider two cases
depending if u is primitive or not.

Case 1. The word u is primitive. It is known (see [7], Lemma 3.1) that if
a unipolar word u is primitive, then u can be expressed as u = vwv for some
v, w ∈ X+. Let n = |v| and let σ be the pilot sequence σ = {n, n, . . . n, . . .}.
This sequence σ is internal and the corresponding inserting sequence is :

σ(u) = {vwv, v.vwv.wv = vvwvwv, . . .}

Since vwv, vvw.vwv ∈ σ(u), σ(u) is not biprefix code.
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Case 2. The word u is not primitive. Then u = pm where p is a primitive
word and m ≥ 2. Let n = |p| and let σ be the internal pilot sequence σ =
{n, n, . . . , n, . . .}. Then the corresponding inserting sequence is:

σ(u) = {pm, p.pm.pm−1 = p2m, . . .}

Clearly σ(u) is not a biprefix code – a contradiction. 2

Examples. Let X = {a, b}.
(1) The word u = ab is dipolar. If the pilot sequence is σ = {1, . . . , 1, . . .},

then the language σ(ab) = {anbn|n ≥ 1} is a biprefix code.
(2) The word u = aba is not dipolar. Taking the same pilot sequence σ as

above, the language σ(aba) = {aba, aababa, . . .} is not a biprefix code because
aababa = aab.aba with aba ∈ σ(aba). This example can be extended in the
following way. If u is a primitive word that is not dipolar, then u can be
written as u = vwv with v, w ∈ X+. If |v| = n and the pilot sequence is
σ = {n, . . . , n, . . .} then σ(u) is not a biprefix code since its second word is
vvwvwv which has u as its suffix.

(3) The word u = abba is primitive and unipolar. Using the internal pilot
sequence σ1 = {1, 1, . . . , 1, . . .}, we obtain the language

σ1(u) = {abba, aabbabba, . . .}

that is not a biprefix code. However if we use instead the pilot sequence σ2 =
{2, . . . , 2, . . .}, we obtain the language:

σ2(u) = {abba, ababbaba, . . . , (ab)nabba(ba)n, . . .}

that is a biprefix code.

3 Ins-primitive words

Closely connected to the operation of catenation is the notion of primitivity. A
word u ∈ X+ is termed primitive if u = gn for some g ∈ X+ implies n = 1,
i.e., u = g. If instead of catenation we consider its generalization, the insertion
operation, we obtain the notion of ins-primitivity. A word u ∈ X+ is said
to be ins-primitive if, for every v ∈ X+, n ≥ 1, u /∈ v ←n v. Clearly, ins-
primitive words are primitive, but the converse is not true. For example anb is
ins-primitive and, for n ≥ 1, anbn is primitive, but not ins-primitive as anbn ∈
ab←n−1 ab.

One of the main results about primitivity is that for every u ∈ X+ there
exists a unique primitive word g and a unique integer n ≥ 1 such that u = gn.
The following lemma aids in showing that a similar result holds also in the case
of ins-primitivity, with the exception that the corresponding ins-primitive word
is not anymore unique.

Recall that a language L is ins-closed ([3]) if u1u2, v ∈ L imply u1vu2 ∈ L.
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Lemma 3.1 If u is a word in X∗ then (u ←n u) ←m (u ←p u) ⊆ (u ←∗ u),
for all m, n, p ≥ 0.

Proof. Let α ∈ (u ←n u) ←m (u ←p u). There exists v ∈ (u ←n u) and
w ∈ (u ←p u) such that α ∈ (v ←m w). As u ←∗ u = ∪k≥0(u ←

k u), we have
that v, w ∈ (u←∗ u).

The Lemma will be proved if we show that (v ←m w) ⊆ (u←∗ u).
The latter statement will be proved by induction on m. If m = 0 then v ∈

(u←∗ u). The insertion closure I(L) of a language L is the smallest ins-closed
language containing L and it has been proven in [3] that I(L) = L ←∗ L. By
taking L = {u} we conclude that u←∗ u is ins-closed, therefore v, w ∈ (u←∗ u)
imply v ← w ∈ (u←∗ u).

Assume the statement true for m and take a word β ∈ (v ←m+1 w) =
(v ←m w) ← w. There exists a word γ ∈ (v ←m w) such that β ∈ γ ← w.
As, according to the induction hypothesis, γ ∈ (v ←m w) ⊆ (u ←∗ u) and
w ∈ (u ←∗ u), the fact that (u ←∗ u) is ins-closed implies that β ∈ (u ←∗ u).
This implies (v ←m+1 w) ⊆ (u ←∗ u). The proof of the induction step and
therefore of the lemma is thus complete. 2

Proposition 3.1 For every word u ∈ X+ there exists an ins-primitive word v
and a positive integer n such that u ∈ v ←n v.

Proof. Suppose u is not ins-primitive. Then there exists v1 ∈ X+ such that
u ∈ v1 ←

n1 v1. If v1 is not ins-primitive, then v1 ∈ v2 ←
n2 v2 for some v2 ∈ X∗.

This implies u ∈ (v2 ←
n2 v2)←

n1 (v2 ←
n2 v2) which, according to Lemma 3.1,

implies u ∈ (v2 ←
∗ v2), where |v2| < |v1|. By repeatedly applying the procedure

and Lemma 3.1, after a finite number of steps, we will get an ins-primitive word
v such that u ∈ v ←∗ v. According to the definition of the iterated insertion,
this means that there exists a number n such that u ∈ (v ←n v). 2

An ins-primitive word v such that u ∈ v ←n v is called an ins-root of u. In
contrast with the case of primitivity, where the root is unique, a word can have
several ins-roots. For example, let X = {a, b} and let w = bbabbabb. Then:

w = b.babb.abb = babb← babb ∈ babb←∗ babb

w = bba.bbab.b = bbab← bbab ∈ bbab←∗ bbab

The words babb and bbab are ins-primitive words and they are both ins-roots of
w.

Let u = babb and v = bbab. Then:

b2ab2ab2 ∈ (u←1 u) ∩ (v ←1 v)

b2ab2ab2ab3 ∈ (u←2 u) ∩ (v ←2 v)

b2ab2ab2ab2ab4 ∈ (u←3 u) ∩ (v ←3 v)
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. . .

(b2a)i+1bi+1 ∈ (u←i u) ∩ (v ←i v)

. . .

We show, by induction on i, that

(b2a)i+1bi+1 ∈ (u←i u) ∩ (v ←i v)

for all i ≥ 1. Indeed, the relation holds for i = 1. Suppose it holds for i− 1, i.e.

(b2a)ibi ∈ (u←i−1 u) ∩ (v ←i−1 v).

As (b2a)ibi ∈ (u←i−1 u), by inserting u = babb we obtain that

(b2a)ib.babb.bi−1 = (b2a)i.b2a.b2.bi−1 = (b2a)i+1bi+1,

is a word in (u←i u). As (b2a)ibi ∈ (v ←i−1 v), by inserting v = bbab we obtain
that

(b2a)i.bbab.bi = (b2a)i.b2a.b.bi = (b2a)i+1bi+1

is a word in (v ←i v). Hence the relation is true for all i ≥ 1. This shows that
u and v are both ins-roots of (b2a)n+1bn+1 for every n ≥ 1.

The result can be generalized to ins-primitive words of the type u = wxww,
v = wwxw, x, w ∈ X+. Namely, if u and v are ins-primitive, they are both
ins-roots of the words (w2x)n+1wn+1 for all n ≥ 1.

The following results show that there are quite many ins-primitive words. In
fact, as Corollary 3.1 states, the set of all ins-primitive words over an alphabet
is right and left dense.

Lemma 3.2 If w ∈ u←n u then Na(w) =(n + 1)Na(u) for all a ∈ X.

Proposition 3.2 If u ∈ X+, a ∈ X, u 6= an then either u is ins-primitive or
all the words w ∈ (u← a) are ins-primitive.

Proof. If u is not ins-primitive, then u ∈v ←n v, where v is an ins-primitive
word. According to Lemma 3.2, Na(u) = (n + 1)Na(v) for all a ∈ X . On
the other hand, if b 6= a is a letter occurring in u, Na(w) = (n + 1)Na(v) + 1
whereas Nb(w) = (n + 1)Nb(v). If w ∈ w′ ←m w′, m > 0 with w′ ins-primitive,
then the numbers of a′s and b′s in w would have as common factor m + 1. We
deduce that w cannot be ins-primitive, as the number of letters a and b in w
are relatively prime. 2

Corollary 3.1 Let IQ(X) be the set of ins-primitive words over an alphabet X
with card(X) ≥ 2. Then IQ(X) is right and left dense.
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Proof. Let u ∈ X+. If u = an for some a ∈ X and if b ∈ X , b 6= a then
anb ∈ IQ(X). If u 6= an then, according to Proposition 3.2 all the words in
(u← a) are ins-primitive. In particular, ua ∈ IQ(X). This proves that IQ(X)
is right dense. By symmetry, one can show that IQ(X) is also left dense. 2

We conclude this section with a result connecting the notions of ins- primi-
tivity, ins-closed language and infix order. Recall that the infix order is defined
as follows: u ≤i v if u is an infix of v, that is v = v1uv2 for some v1, v2 ∈ X∗.

Proposition 3.3 Let L ⊆ X+ be an ins-closed language such that Lc is ins-
closed. Let IP (L) be the set of ins-primitive words and let IF (L) be the set of
minimal words of L relatively to the infix order ≤i. Then:

(i) If u ∈ L and if v is an ins-root of u, then v ∈ L.
(ii) If L′ is an ins-closed language containing IP (L) the L ⊆ L′.
(iii) Every word u ∈ IF (L) is ins-primitive.

Proof. (i) Since v is an ins-root of u, u ∈ v ←n v. If v ∈ Lc, then, since Lc is
ins-closed, v ←n v ⊆ Lc and u ∈ L, a contradiction. Hence v ∈ L.

(ii) This follows from (i).
(iii) Suppose u is not ins-primitive. Then u ∈ v ←n v, n ≥ 1 for some

ins-primitive v ∈ L (see (i)). Therefore u = xvy. Since u is minimal relatively
the infix order ≤i, x = y = 1, a contradiction. 2

4 Shuffle- and com-shuffle-primitivity

Recall that the shuffle product ∐ of two words u and v is the set:

u∐ v = {w ∈ X∗|w = u1v1u2v2 . . . unvn, u = u1u2 . . . un, v = v1v2 . . . vn,

ui, vj ∈ X∗, 1 ≤ j ≤ n}

Since the shuffle product is associative and commutative, the nth shuffle
power u∐n u of a word u can be defined in the usual way.

Note that the shuffle product operation generalizes the notion of catenation
in the sense that the catenation uv is an element of the set u∐v. Consequently,
we can use the notion of shuffle to obtain yet another generalization of the
notion of primitivity, namely the shuffle-primitivity. A word u ∈ X+ is shuffle-
primitive (or shortly, shf-primitive) if u /∈ (v ∐n v) for any v ∈ X+ and n ≥ 1.
Clearly every shf-primitive word is primitive and ins-primitive.

The converse is not true. For example, the word aabbaa is not shf-primitive
because aabbaa ∈ aba ∐ aba. On the other hand, aabbaa is primitive and ins-
primitive. Indeed, from the form of the word we see that the only possibility for
it to be obtained as an insertion, is that aabbaa ∈ u← u where u contains two
a’s and one b. (Two is the only common divisor of the number of a’s and b’s,
therefore only one insertion is performed). By exploring all the possibilities, we
deduce that no u of this form produces aabbaa, therefore aabbaa is ins-primitive.
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Proposition 4.1 For every word u ∈ X+ there exists a shf-primitive word v
and a positive integer such that u ∈ v ∐n v.

Proof. Suppose that u is not shf-primitive. Then there exists v1 ∈ X+ such
that u ∈ v1 ∐

n1 v1. If v1 is not shf-primitive, then v1 ∈ v2 ∐
n2 v2. This implies

u ∈ (v2∐
n2 v2)∐

n1 (v2∐
n2 v2) which, because the the associativity of the shuffle

operation, is included in (v2∐
∗ v2). By repeatedly applying the procedure, after

a finite number of steps, we will get a shf-primitive word v such that u ∈ v∐∗ v.
According to the definition of the iterated shuffle, this means that there exists
a number n such that u ∈ (v ∐n v). 2

A shf-primitive word v such that u ∈ v ∐n v is called an shf-root of u.
A word u can have several shf-root. Let X = {a, b} and let u = bbabbabb.

Then:
u ∈ (babb∐ babb) ∩ (bbab∐ bbab)

The words babb and bbab are shf-primitive words and they both are shf-roots of
u.

Recall that a language L is shuffle-closed if u, v ∈ L imply u∐ v ⊆ L.

Proposition 4.2 Let L ⊆ X+ be a shuffle-closed language such that Lc is also
shuffle-closed. Let SH(L) be the set of shf-primitive words in L and let EB(L)
be the set of the minimal words of L relatively to the embedding order ≤e. Then:

(i) If u ∈ L and if v is a shf-root of u then v ∈ L.
(ii) If L′ is a shuffle-closed language containing SH(L), then L ⊆ L′.
(iii) Every word u ∈ EB(L) is shf-primitive.

Proof. The proof is similar to the proof of Proposition 3.3. 2

The shuffle operation can be further generalized if we consider relaxing the
condition that the order of the letters in the words is preserved. The com-shuffle
of u and v, u@v, is defined by:

u@v = com(u) ∐ com(v),

where com(v) is the commutative closure of v, i.e., the set of all words obtained
by arbitrarily permuting the letters of v. A language L is com-shuffle-closed if
u, v ∈ L implies u@v ∈ L. Since the com-shuffle product is associative, the nth

com-shuffle power u@nu of a word u can be defined in the usual way. A word
u ∈ X+ is com-shf-primitive if u /∈ v@nv for every v ∈ X+ and n ≥ 1.

Proposition 4.3 For every word u ∈ X+ there exists a com-shf-primitive word
v and a positive integer such that u ∈ v@nv.

Proof. Proof similar to the proof of Proposition 4.1, by using the fact that the
com-shuffle is an associative operation. 2
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A com-shf-primitive word v such that u ∈ v@nv is called a com-shf-root of u.

Proposition 4.4 Let u ∈ X∗ be a word and let alph(u) = {a1, . . . an}, n ≥
2. Then u is com-shf-primitive iff the numbers Na1

(u),Na2
(u),. . ., Nan

(u) are
relatively prime (i.e. not having any common divisors other than the unity).

Proof. Assume u is com-shf-primitive. Suppose that the numbers Nai
(u), 1 ≤

i ≤ n have m as the greatest common divisor. If we take now the word w
consisting of Nai

(u)/m letters ai for each 1 ≤ i ≤ n (their order does not
matter) then we have that u ∈ w@m−1w which contradicts the fact that u is
com-shf-primitive.

For the converse implication take a word u with the property that Nai
(u)

are relatively prime, 1 ≤ i ≤ n. The word is com-shf-primitive because, if
u ∈ w@mw for some com-shf-primitive word w and number m, then m + 1
would be a common divisor of Nai

(u), 1 ≤ i ≤ n.
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